Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256937

RESUMO

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Assuntos
Interferon Tipo I , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Drosophila melanogaster , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
2.
J Med Genet ; 60(4): 368-379, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35882526

RESUMO

BACKGROUND: Axenfeld-Rieger syndrome (ARS) is characterised by typical anterior segment anomalies, with or without systemic features. The discovery of causative genes identified ARS subtypes with distinct phenotypes, but our understanding is incomplete, complicated by the rarity of the condition. METHODS: Genetic and phenotypic characterisation of the largest reported ARS cohort through comprehensive genetic and clinical data analyses. RESULTS: 128 individuals with causative variants in PITX2 or FOXC1, including 81 new cases, were investigated. Ocular anomalies showed significant overlap but with broader variability and earlier onset of glaucoma for FOXC1-related ARS. Systemic anomalies were seen in all individuals with PITX2-related ARS and the majority of those with FOXC1-related ARS. PITX2-related ARS demonstrated typical umbilical anomalies and dental microdontia/hypodontia/oligodontia, along with a novel high rate of Meckel diverticulum. FOXC1-related ARS exhibited characteristic hearing loss and congenital heart defects as well as previously unrecognised phenotypes of dental enamel hypoplasia and/or crowding, a range of skeletal and joint anomalies, hypotonia/early delay and feeding disorders with structural oesophageal anomalies in some. Brain imaging revealed highly penetrant white matter hyperintensities, colpocephaly/ventriculomegaly and frequent arachnoid cysts. The expanded phenotype of FOXC1-related ARS identified here was found to fully overlap features of De Hauwere syndrome. The results were used to generate gene-specific management plans for the two types of ARS. CONCLUSION: Since clinical features of ARS vary significantly based on the affected gene, it is critical that families are provided with a gene-specific diagnosis, PITX2-related ARS or FOXC1-related ARS. De Hauwere syndrome is proposed to be a FOXC1opathy.


Assuntos
Anormalidades do Olho , Proteínas de Homeodomínio , Humanos , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Segmento Anterior do Olho/anormalidades , Anormalidades do Olho/genética , Anormalidades do Olho/diagnóstico , Fatores de Transcrição Forkhead/genética , Mutação
3.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041744

RESUMO

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiologia , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Masculino , Mutação/genética , Fenótipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiologia , Estado Epiléptico/genética , Adulto Jovem
4.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422817

RESUMO

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Assuntos
RNA Helicases DEAD-box/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , RNA/genética , Humanos
5.
Kidney Int ; 95(6): 1494-1504, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005274

RESUMO

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON. Here, we show that many of these patients, including two previously unreported, exhibit a wide array of kidney abnormalities. Detailed phenotyping of 14 patients with SON haploinsufficiency identified kidney anomalies in 8 patients, including horseshoe kidney, unilateral renal hypoplasia, and renal cysts. Recurrent urinary tract infections, electrolyte disturbances, and hypertension were also observed in some patients. SON knockdown in kidney cell lines leads to abnormal pre-mRNA splicing, resulting in decreased expression of several established CAKUT genes. Furthermore, these molecular events were observed in patient-derived cells with SON haploinsufficiency. Taken together, our data suggest that the wide spectrum of phenotypes in patients with a pathogenic SON mutation is a consequence of impaired pre-mRNA splicing of several CAKUT genes. We propose that genetic testing panels designed to diagnose children with a kidney phenotype should include the SON gene.


Assuntos
Proteínas de Ligação a DNA/genética , Testes Genéticos/métodos , Haploinsuficiência , Antígenos de Histocompatibilidade Menor/genética , Splicing de RNA/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Canais de Cátion TRPP/genética , Anormalidades Urogenitais/diagnóstico , Refluxo Vesicoureteral/diagnóstico
6.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545680

RESUMO

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Genes Essenciais/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação/genética , Splicing de RNA/genética , Animais , Encéfalo/anormalidades , Encéfalo/patologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Anormalidades do Olho/genética , Feminino , Haploinsuficiência/genética , Cabeça/anormalidades , Heterozigoto , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Antígenos de Histocompatibilidade Menor/análise , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem , RNA Mensageiro/análise , Coluna Vertebral/anormalidades , Síndrome , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologia , Peixe-Zebra/genética
7.
Genet Med ; 18(11): 1111-1118, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26963284

RESUMO

BACKGROUND: Chromosome 15q13.3 represents a hotspot for genomic rearrangements due to repetitive sequences mediating nonallelic homologous recombination. Deletions of 15q13.3 have been identified in the context of multiple neurological and psychiatric disorders, but a prospective clinical and behavioral assessment of affected individuals has not yet been reported. METHODS: Eighteen subjects with 15q13.3 microdeletion underwent a series of behavioral assessments, along with clinical history and physical examination, to comprehensively define their behavioral phenotypes. RESULTS: Cognitive deficits are the most prevalent feature in 15q13.3 deletion syndrome, with an average nonverbal IQ of 60 among the patients studied. Autism spectrum disorder was highly penetrant, with 31% of patients meeting clinical criteria and exceeding cutoff scores on both ADOS-2 and ADI-R. Affected individuals exhibited a complex pattern of behavioral abnormalities, most notably hyperactivity, attention problems, withdrawal, and externalizing symptoms, as well as impairments in functional communication, leadership, adaptive skills, and activities of daily living. CONCLUSIONS: The 15q13.3 deletion syndrome encompasses a heterogeneous behavioral phenotype that poses a major challenge to parents, caregivers, and treating providers. Further work to more clearly delineate genotype-phenotype relationships in 15q13.3 deletions will be important for anticipatory guidance and development of targeted therapies.Genet Med 18 11, 1111-1118.


Assuntos
Transtorno do Espectro Autista/genética , Transtornos Cromossômicos/genética , Disfunção Cognitiva/genética , Deficiência Intelectual/genética , Convulsões/genética , Atividades Cotidianas , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 15/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Linhagem , Convulsões/fisiopatologia
8.
Cardiol Young ; 25(1): 115-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24192140

RESUMO

OBJECTIVE: Efficient diagnosis of an underlying genetic aetiology in a patient with congenital heart disease is essential to optimising clinical care. Copy number variants are one aetiology of congenital heart disease; the majority are identifiable by targeted fluorescence in situ hybridisation or array comparative genomic hybridisation, not by classical cytogenetic analysis. This study assessed the utility of array comparative genomic hybridisation as a first-tier diagnostic test for neonates with congenital heart disease. Study design A prospective chart review of neonates with congenital heart disease in the Cardiac Intensive Care Unit at Children's Hospital of Pittsburgh of UPMC was performed. Patients were tested by array comparative genomic hybridisation and classical cytogenetic analysis simultaneously. Data collected included all chromosome abnormalities detected, physical examination findings, and imaging results. McNemar's test was used to compare detection of array comparative genomic hybridisation and classical cytogenetic analysis. RESULTS: Of 45 patients, three (6.7%) had an abnormality detected by classical cytogenetic analysis and an additional 10 (22.2%) had a copy number variant detected by array comparative genomic hybridisation, highlighting an increased detection rate (p=0.008). Several of these copy number variants had unclear clinical significance, requiring additional investigation. The prevalence of dysmorphology and/or comorbidity in this population was 72%. Identification of dysmorphic features was greater when assessed by a geneticist than by providers of different subspecialties. CONCLUSIONS: Array comparative genomic hybridisation has significant clinical utility as a first-tier test in this population, but it carries the potential for incidental findings and results of uncertain clinical significance. Collaboration between cardiologists and medical geneticists is essential to providing optimal clinical care.


Assuntos
Aberrações Cromossômicas , Hibridização Genômica Comparativa/métodos , Cardiopatias Congênitas/diagnóstico , Feminino , Seguimentos , Cardiopatias Congênitas/genética , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA